
			Skip to content
	
		
									
				
					
		Go back to the Xojo home page

														

				
					open menu
					
				
				
				
				
				
				
				
				
				
				
				
								
				
					Xojo Programming Blog
					Blog about the Xojo programming language and IDE
				

			
									
				
	
		
				
			
				PDF File Generation? There is an API for that!

				

		Published February 6, 2018	
			
			by
			Javier Menendez		
	
			

			
								I’ve heard it several times: how can I export to PDF from Xojo? Sure, there are lots of answers pointing to a bunch of resources, including excellent plug-ins from third parties. But can you accomplish the same thing using an already available API? Yes, there is a remote API for that! The requirement is that your Xojo app will need to have access to Internet … and, of course, you’ll need to do just a bit of coding.

So I have a challenge for you, you can download the already canned Xojo class ready to use … or you can continue reading and discover how easy is to use Xojo to generate your PDF files!

The service we are going to use is the OpenSource software Docverter, able to convert any plain, HTML, Markdown or LaTeX file to PDF, Docx, RTF or ePub using a simple HTTP API. In my tests it worked like a charm from the HTML + CSS returned from Markdown Parser class of my own.

In fact it is possible to use this service stright from a Shell class instance, but I’ve found it more portable and multiplatform to wrap it in a Class so you can simply drop it in your project, passing the file or files you want, and specifying the conversion you want to get back; as simple as that!

For that API wrapper we are going to create a new class derived from HTTPSocket. Let’s name it HTTPDocConverter and put as the next step these String constants that will ease its use:

	kDOCX As String = "docx"; scope: public.
	kePUB As String = "ePub"; scope: public.
	kMOBI As String = "mobi"; scope: public.
	kRTF As String = "rtf"; scope: public.
	kRemoteAPI As String = "http://c.docverter.com/convert"; scope: private.

I think that is a good habit to get accustomed to constants wherever Strings or other frozen values are involved in order to minimize possible minor bugs in the code.

Now it is time to implement the class Constructor passing along three parameters that will simplify its use:

	convertDataTo As String. This is the text that identifies the format we want our document converted to and that is why we defined the Constants in the previous step.
	inputFile As folderItem. A valid FolderItem file pointing to the file we want to use as the source for the conversion process.
	notification as callback. This is new Delegate Type we will define in the next step, and that will be used by the class to, well, notify of the process completion. This way, your code and UI will not be locked.

So our class Constructor will have the following signature:

Constructor(convertDataTo As String, inputFile As FolderItem, notification as callback)

Once we add the Constructor method, the Xojo IDE will put the right class initialization here, and we will complete the code with the following sentences:

Super.Constructor
registeredCallback = notification
encodeRequest(inputFile, convertDataTo)

Time to add to the class a new Delegate Type (Insert > Delegate), using the following signature in the Inspector Panel:

	Delegate Name: callback
	Parameters: content As String, documentType As String
	Scope: Private.

That is: our class will accept as a callback Delegate any method that accepts two strings. In fact our class will return the already converted data into the argument content, and also the document type used for the conversion into the documentType argument.

With our Delegate already set, it’s time to add the registeredCallback Property to the class, and that will be responsible to point to the Delegated method passed to the class instance throught the Constructor:

	Name: registeredCallback
	Type: callback
	Scope: Private

In fact, let’s add two more Properties:

	Name: convertedToType. This one will contain the conversion format.
	Type: String
	Scope: Private

	Name: receivedData. This property will contain the converted data received from the remote service.
	Type: String
	Scope: Private

Encoding the Post Request … the right way

With all our properties set, it is time to add the Method encodeRequest. Here is where we will take care of constructing our Post Header request including the data for the source file we have to send to the remote URL, along all the required stuff. Create the Method with the following signature:

	Method Name: encodeRequest
	Parameters: inputFile As Folderitem, convertdataTo as String

And write the following snippet of code in the resulting Code Editor:

Dim formData As New Dictionary
formData.Value("input_files[]") = inputFile
formData.value("from") = "html"
formData.value("to") = convertDataTo
convertedToType = convertDataTo
Dim boundary As String = ""
Boundary = "--" + Right(EncodeHex(MD5(Str(Microseconds))), 24) + "-reQLimIT"
Static CRLF As String = EndOfLine.Windows
Dim data As New MemoryBlock(0)
Dim out As New BinaryStream(data)
For Each key As String In FormData.Keys
 out.Write("--" + Boundary + CRLF)
 If VarType(FormData.Value(Key)) = Variant.TypeString Then
 out.Write("Content-Disposition: form-data; name=""" + key + """" + CRLF + CRLF)
 out.Write(FormData.Value(key) + CRLF)
 Elseif FormData.Value(Key) IsA FolderItem Then
 Dim file As FolderItem = FormData.Value(key)
 out.Write("Content-Disposition: form-data; name=""" + key + """" + "; filename="""+inputFile.Name+""""+ CRLF)
 out.Write("Content-Type: text/html" + CRLF + CRLF)
 Dim bs As BinaryStream = BinaryStream.Open(File)
 out.Write(bs.Read(bs.Length) + CRLF)
 bs.Close
 End If
Next
out.Write("--" + Boundary + "--" + CRLF)
out.Close
Super.SetRequestContent(data, "multipart/form-data; boundary=" + Boundary)

Calling the remote API

Now that the hard part is complete, we are going to add the Method getConvertedFile, in charge of call the remote API:

	Method Name: getConvertedFile
	Scope: Public

And write this simple line of code in the Code Editor:

Super.post(kRemoteAPI)

This single line fires all the magic behind the scenes, now in order to get our response we need to add the Event PageReceived to our class, writing the following code in the resulting Code Editor:

If registeredCallback <> Nil Then
 registeredCallback.Invoke content, convertedToType
End If

If you want, you can also add the Error Event, so you can raise or inform about any error during the process.

Testing our class!

In order to test the class, and convert some documents along the way, add a new Method to the project Window (let’s assume its a Xojo Desktop Project). This is the one we will use as Delegate for the callback once we receive the converted data:

	Method Name: conversionCompleted
	Parameters: convertedData As String, documentType as String
	Scope: Public

And write the following code in the resulting Code Editor for the Method:

Dim f As FolderItem = GetSaveFolderItem("", "ConvertedFile." + documentType)
If f <> Nil Then
 Dim tof As TextOutputStream = TextOutputStream.Create(f)
 If tof <> Nil Then
 tof.Write convertedData
 tof.Flush
 tof.Close
 End If
End If

Add now the Open Event to the same Window and write the following code, this is the one in charge of creating our class instance and firing the conversion process. In this example converting the source file to a PDF file (you only need to change the file format constant to get other kind of documents as result):

Dim f As FolderItem = GetOpenFolderItem("")
If f <> Nil Then
 Dim post As New HTTPDocConverter(HTTPDocConverter.kPDF,f, AddressOf conversioncompleted)
 post.getConvertedFile
End If

Creating PDF Files without Internet connection

What if you need to generate PDF files without having an active Internet connection or because you handle confidential information? Well, in these cases I’m sure you’ll find of interest the wkhtmltopdf tool/library.

Add it to your product bundle/folder or directory during the compilation process and you’re set!

In this case, you have to invoke it from a Shell instance passing HTML as the source file and getting the PDF as result. The downside is that the distributable product will be weighter (47 Megabytes)! Not a big problem these days, anyway.

The Last Word

As you have seen, with a couple of methods and Events we were able to create a multiplatform Class that works in 32-bit and 64-bit targets for Desktop, Console, web and Raspberry Pi deployments. I’ve been able to create PDF, DOCX, RTF and even MOBI files in no time!

Javier Rodriguez has been the Xojo Spanish Evangelist since 2008, he’s also a Developer, Consultant and Trainer who has be using Xojo since 1998. He manages AprendeXojo.com and is the developer behind the GuancheMOS plug-in for Xojo Developers, Markdown Parser for Xojo and the Snippery app, among others

*Read this post in Spanish

							

						
				Published in Cross-Platform, Learning, Tips and Web
					API
	Console
	PDF

				
	
		Previous Post
		Compilers 106 – Optimizer
	

	
		Next Post
		Love it or Hate it, Networking is Necessary
	

			

		

	
	

	
		Sidebar

		Search

	
		Search
		
		
	

		
		Recent Posts

			
					Get Started with Xojo Lite for Only $99
									
	
					Only 48 Days Until Monkeybread Software’s Xojo Conference
									
	
					Webinar Follow-Up: Using Xojo to Develop NetSuite Web Apps
									
	
					Android Quick Tip: Read and use installed fonts
									
	
					Building for Xojo Web from the Ground Up
									

		Categories
CategoriesSelect Category
Community
 Guest Post
 XDC
 XOJO.CONNECT
 XojoTalk
Cross-Platform
 Android
 Desktop
 iOS
 Linux
 Mac
 Raspberry Pi
 Web
 Windows
 Xojo Cloud
Database
Dev Marketing
Fun
General
Learning
 Tips
 Tutorials
Networking
Technology
 Security
 Source Control

Archives
		2024
	March
	February
	January

		2023
	December
	October
	September
	August
	June
	May
	April
	March
	February
	January

		2022
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2021
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2020
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2019
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2018
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2017
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2016
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2015
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2014
	December
	November
	October
	September
	August
	July
	June
	May
	April
	March
	February
	January

		2013
	December
	November
	October
	September
	August
	July
	June

Feed
			RSS Feed

			

		

 Apex WordPress Theme by Compete Themes
	

